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Abstract
Modern CPUs are being developed exceptionally fast, and the number of

cores is increasing rapidly. This has led to the development of multithread-
ing, which is a technique that allows for the execution of multiple threads
on a single CPU. Memory models are a fundamental aspect of multithread-
ing and describe how memory is ordered at runtime in relation to source
code. Currently, existing memory models are unsatisfactory and there is a
need for new models that can be rigorously proven. To achieve this, formal
verification using the Coq proof assistant is utilized, which enables auto-
mated proof checking and ensures the accuracy of results. Specialists in
weak memory are continuously improving the results in this domain.

One of the big and common problems in weak memory is the proof of
equivalence of several memory models. Memory models are represented as
expressions over relational language.

This thesis focuses on the automation of proving equalities over rela-
tional expressions in Coq. We are utilizing the techniques of equality satu-
ration and E-graph data structure to generate proof of equaivalence for a
given pair of terms. By automating these proofs, we can greatly increase
the efficiency and accuracy of the proof process in weak memory.
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Introduction
Memory model is an abstraction, invented to describe the behavior of a

program in a multithreaded environment. A memory model describes the
behavior of a concurrent program on a particular system. A memory model
dictates how memory operations interact with each other.

A well-established approach to define a memory model is to use declar-
ative semantics, where a program execution is depicted as a graph, where
nodes represent memory operations and edges denote the order on these
operations. Some examples of binary relations between instructions are
Program Order, which sequantially binds events in one thread, and reads-
from, which relates writes to reads, reading from them.

The most traditional and conservative memory model is Sequential Con-
sistency (SC) [10]. A nice way to think about SC is as a switch. At each
time step, the switch selects a thread to run, and runs its next event com-
pletely.

“The result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each processor appear in the order specified by
its program.” (Leslie Lamport (1979))

However, SC fails to describe the real-world concurrent systems due to
compiler and CPU optimizations. We can only run a single instruction at
a time, so we lose the benefit of running a program on multiple threads.
Due to that, models that are more complex, but yield better performance,
are developed and used in practice. Memory models that are more relaxed
than Sequential Consistency are called weak memory models. While weak
memory models give compilers and processors more flexibility to optimize,
they introduce more problems to the programmer.

If we reason about weak memory models in a declarative way, we use
relations to describe models and facts about them [3]. As memory models
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are stated with relational expressions, proofs of various model properties
are also done reasoning in relational language. Proofs of such propositions
are typically massive and very error-prone. There were several cases of
incorrect results in submitted and published papers. Batty et al. [5] sug-
gested an incorrect fix for the semantics of SC calls in C++, which was
later documented by Lahav et al. [9]. Moreover Pichon-Pharabod et al. in
2016 suggested an incorrect proof of compilation in their paper [15].

Given that writing and maintaining proofs about Weak Memory on pa-
per is very difficult, it is considered good practice to write them in Coq [6],
which is a proof assistant system. Coq helps to grant the correctness of the
proof process. In Coq, proofs are expressed as formal mathematical objects,
and the correctness of the proof is ensured by checking that the proof is con-
sistent with the axioms and rules of logic. Coq is a tool that facilitates the
creation of mechanically-verifiable proofs, in contrast to paper-based proofs
which are prone to errors.

Weak memory proofs, even with the use of Coq, tend to be huge and
convoluted. This is why in this thesis, we are focusing on automating a
specific part of weak memory proofs, namely the proofs of equivalences
between several memory models. As already mentioned, we can define
memory models as axioms over relational language. Consider an example
of a proposition about relations. Let us denote r, r’ ⇢ A ⇥ A — two
relations over a given set A. Now we may consider common operations in
relational language, e.g. transitive closure (r*), reflexive closure (r?), or
composition (r ;; r’). An example of a proposition we want to prove
may look like this:

(r* ;; r?) ;; r? ⌘ r*

If we were to prove this statement in Coq by hand, we would have to con-
sequently apply multiple theorems to rewrite both sides of the equivalence
relation until they are syntactically equal. In this particular example, we
would have to apply the theorem rt_cr twice:
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rt_cr : forall (A : Type) (r : relation A), r* ;; r? = r*

After rt_cr is applied to the left-hand side (lhs) two times, the two sides
become syntactically equal. rt_cr and other theorems that help to reason
about relations are provided by the Hahn library [1].

The general problem discussed in this thesis is as follows: given a rewrit-
ing system, i.e. a set of theorems, and an equivalence relation between two
expressions, we want to find a sequence of rewrites that can be applied to
both sides of the relation to make them syntactically equal. This is a wider
problem than reasoning about relational expressions, thereafter the solu-
tion we propose could be adapted and used to solve other problems that
involve derivability in two-sided associative calculus over a given language
in Coq. This thesis, in turn, focuses on applying the proposed technique
to automate weak memory, where the rewriting system we use is the Hahn
library.

As a basis for various proofs in the area of weak memory, the weakmem-
ory1 organization on GitHub, specifically the imm2 repository, was utilized.
The work on the thesis involves analyzing present proofs and their possible
patterns to automate the process and attempt to shorten them using the
developed tool.

1.1 Approach
Our approach to solving equivalences is based on the technique called

equality saturation which utilizes the data structure, called an e-graph. E-
graph stores an equivalence relation over terms of some language and allows
to store potentially exponential amount of terms in a compact way. E-graph
is a set of equivalence classes (e-classes) and e-class is a set of e-nodes, which
represent equivalent terms in the language. Whilst e-nodes are function
symbols, associated with a list of e-classes.

1https://github.com/weakmemory
2https://github.com/weakmemory/imm
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Equality saturation is a process of iteratively applying a set of rewrite
rules to the e-graph until rewrites bring no more new information to the
graph. That point is called saturation. The saturated e-graph represents a
set of all possible terms equivalent to the origin, that can be obtained by
applying the rewrite rules to the initial term.

In a saturated e-graph it becomes algorithmically easy to check if two
terms are equivalent and, moreover, to find a proof of their equivalence.
Having a sequence of rewrites, we can apply them within the Coq proof
view. Just as we would do by hand, applying the theorems one by one.

10



2 Objectives
This thesis aims to automate solving equivalences over relational ex-

pressions in Coq. The goal is to successfully utilize the egg library and
automate the proof process. The main objectives are:

• Develop a framework for communication between Rust and Coq inter-
active proofs.

• Make a rule-parameterized algorithm on top of the egg library for pro-
ducing a series of rewrites, which prove relational equivalence. Given
two expressions and a rewriting system, there may be multiple ap-
proaches to prove the equivalence.

• Experiment with existing proofs and used lemmas to come up with a
usable and efficient rule set. Firstly, to analyze existing weak memory
proofs and provide users with a useful interface. Secondly, as big rule
sets result in huge e-graphs, that take a long to be built, we aim to
research the efficient and substantive rule set, that would be small
enough to be used to build e-graphs in practice.
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3 Related Work
First part of this chapter focuses on introducing the reader to Coq proof

assistant, its core concepts and significance. Then other solutions to the
problem are discussed in Section 3.2. Finally, we focus on the details of our
particular approach and cover details regarding equality saturation and the
egg library in Section 3.3.

3.1 Coq
This section aims to provide an overview of Coq and its significance in

the field of theorem proving. We will outline the advantages of using Coq
compared to other proof assistants and methods. Additionally, we will delve
deeper into the Coq proving process.

3.1.1 Coq Overview

Coq is a formal proof management system. It provides a language called
Gallina, which is used to define mathematical objects and write formal
proofs. The formalism behind Coq is the Calculus of Inductive Construc-
tions (CIC) [14]. In CIC types are used to ensure the correctness of proofs.
Each theorem is essentially a type, and its proof is a value inhabiting that
type. It might also be useful to think of proofs as functions from hypothesis
to conclusion. For example, assume we have a context �, a proposition
' and we want to prove � ` '. That would mean that the proof we are
looking for is a mapping, which for any argument of type � constructs a
value of type '.

3.1.2 Coq Proof mode

As mentioned earlier, proofs can be viewed as functions and this is one
of the ways to make a proof in Coq. We will provide an example for a better
understanding. Consider the following theorem: given value of type A and
a function f : A ! B, we can construct a value of type B.
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Definition test (A B : Prop) :
A -> (A -> B) -> B.

To prove such a theorem we need to apply the value a of type A to the
function f and conclude the proof:

Definition test (A B : Prop) :
A -> (A -> B) -> B

:= fun (a : A) (f : A -> B) => f a.

Constructing proof terms by hand may be useful to learn Coq, but it is
very inconvenient to write bigger proofs in such a manner. In a bigger proof,
as like as in paper proofs, you want to iteratively modify the environment
and step by step achieve the goal. Coq enters proof mode when you begin
a proof, such as with the Theorem command:

Theorem test (A B : Prop) :
A -> (A -> B) -> B.

Proof.

When you enter a proof mode, you are able to always see the current
unfinished goals and an up-to-date hypothesizes:

A, B : Prop
============================
A -> (A -> B) -> B

Now we can prove the theorem using tactics. Tactics implement back-
wards reasoning, so when a tactic is applied, all hypothesizes it uses to
modify the goal are added to the context.

Firstly, we call an intros tactic, which introduces all propositions on
the left side of the implication as assumptions:

A, B : Prop
H : A
H0 : A -> B
============================
B

We have hypothesis H of type A, but we need B. We call an apply H0
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tactic, which proves us B, but adds A as a new goal. Now if we call apply
H, we will conclude the proof.

Lemma test’ (A B : Prop) :
A -> (A -> B) -> B.

Proof.
intros.
apply H0.
apply H.

Qed.

3.1.3 Coq’s Significance

Other Proof Assistants are continuing to appear, e.g. Lean, Agda,
Arend, but Coq has been developed and improved since 1989. The heart of
a proof assistant is its kernel, which is the primary source of reliability of
the tool. Unfortunately, regarding the kernel’s size, as any other software,
it has issues. However, the amount of work done by the Coq community
to recheck and validate the kernel, makes Coq the most trustworthy proof
assistant available.

Moreover, testimony to Coq’s huge strength is the amount of impressive
results, obtained using it. The most famous result, achieved using Coq, is
the Four Color Theorem proof. The Four Color Theorem states that any
map can be colored using only four colors so that no two adjacent regions are
colored the same. There were several paper proofs, that were all proven to
be incorrect after a while. A computer-assisted proof was proposed by Ken-
neth Appel and Wolfgang Haken in 1976 [4]. The proof reduced the problem
to the analysis of a smaller number of options and their enumeration by a
computer for many hours. Consequently, the mathematical community was
not inclined to trust the proof. The first formal checked proof was proposed
by George Gonthier et al. in 2005 [7], which showed the community that
Coq is ready for huge and complex proofs.
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3.1.4 Proof Automation

This thesis focuses on automating the proofs, whilst a question may
arise whether such an approach makes proofs less clear to read. There
are several proof styles in Coq. A framework called SSReflect3 exists.
Conceptually, SSReflect differs from ordinary Tactics4 in that proofs are
written with almost no automation, and the tactics language is much more
expressive. Even though SSReflect has less automation, proofs anyway
tend to be confusing. On the other hand, when classical Coq Tactics are
used, the proof is usually broken down into a huge number of lemmas and
sub-claims, definitions of which make the idea clear. Lemmas that are deep
down inside the proof can typically be automated without sacrificing the
readability because their proofs are self-evident.

3.2 Alternative solutions to solving relational equa-
tions

In 2023 Kokologiannakis et al. presented a tool called Kater [8]. Kater
is a tool that allows one to automatically answer memory-model questions.
Kater is a useful, but standalone tool. Firstly, that means we must believe
in its correctness, whereas any functionality integrated into Coq is protected
by Coq’s type checker from producing incorrect results. Secondly, proofs in
weak memory are often more diverse than just reasoning about relational
expressions. For instance, we may want to prove correctness of the compila-
tion scheme, e.g. from C to Assembly language. In such cases, the semantics
of the assembly code must be related to the original operational semantics
of the instructions in our language. While relations are still relevant, they
are only a small part of the problem. The main focus is on proving the
properties of the compilation process. Therefore, Kater is suitable only for
a limited set of problems, where relations are the primary concern, and the
proof process does not involve other complex components. In contrast, Coq
provides a comprehensive framework for formal reasoning that allows us to

3https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html
4https://coq.inria.fr/refman/proof-engine/tactics.html#tactics
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tackle a wide range of problems.

3.3 E-graphs and Equality Saturation
E-graphs are a generalization of a set-union data structure [16].

E-graphs were first introduced by Greg Nelson and Derek C. Oppen in
1980 [13]. Since then, e-graphs have been used for successful mechanical
theorem proving and program verification, e.g. in Stanford Pascal Verifier
in 1979 [11].

We will now formally define an e-graph. Let ⌃ be a set of function
symbols. Let ⌃n be a subset of ⌃ consisting of symbols of arity n. Let Id
be a set of unique identifiers id1, id2, . . . , idk, called the e-class Ids. Then
e-node is a function symbol f 2 ⌃ and a list of n e-class Ids. E-node is
denoted f(id1, id2, . . . , idn).

Definition 3.1 (Definition of an E-graph [17]). An e-graph is a tuple
(U,M,H) where:

• U is a union-find data structure over e-class Ids.

• M is a map from e-class Ids to e-classes.

• H is a map from e-nodes to e-class Ids.

E-graphs provide an interface that is a superset to DSU. Operations
add, find and merge allow to query the data structure and ematch allows
to perform an e-matching [12] algorithm that searches for the pattern in
the e-graph. The pattern is an expression with variable placeholders, which
is used in rewrites, e.g. in rewrite x ⇥ 2 �! x ⌧ 1, x is the pattern
variable. Information about the e-graph invariants can be found in egg
paper [17].

Here we give an example of how a simple e-graph is built. Consider such
a simple language:
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enum SimpleLanguage {
Num(i32),
”+” = Add([Id; 2]),
”*” = Mul([Id; 2]),
”/” = Div([Id; 2]),
”<<” = Bitwise([Id; 2]),
Symbol(Symbol),

}

It is denoted as if we were to use it in egg library. Elements of the enum
are function symbols with a name and a given arity. Notation explained:

”+”|{z}
1

= Add|{z}
2

([Id; 2]| {z }
3

)

1 — A string literal to automatically generate a parser for the language

2 — A unique identifier of a function symbol

3 — Arity of the function symbol

Let us now consider the following arithmetic expression: (a ⇥ 2) / 2.
The resulting e-graph is shown in Figure 1. E-classes are shown in dashed
boxes and e-nodes are circles with their function symbols. Edges represent
the parent-child relationship between e-nodes. If the node represents an
operator, its children are the arguments. In Figure 1, no rewrite rules were
yet added, so each e-node is in its own e-class.

When the e-graph is built we can run an equality saturation algorithm.
Consider a rewriting system S, containing rules of form lhs �! rhs, where
lhs and rhs are expressions in our language. On a high level algorithm
does the following:

1. Iterate over rules r 2 S. For each rule r:

(a) Try to match the pattern from r’s lhs with e-nodes present in
the graph.
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(b) If a match was found: if rhs was not present in the graph, add
it. Then merge lhs and rhs e-classes.

2. Loop step 1 until each new iteration introduces new equivalences into
the graph. After the process is finished, graph is called saturated.

Figures 1–4 illustrate how the algorithm proceeds. In Figure 2 the rule
x ⇥ 2 �! x ⌧ 1 was applied. In Figure 3 the rule (x ⇥ y)/z �! x
⇥ (y/z) was applied. In Figure 4 rules x/x �! 1 and 1 ⇥ x �! x were
applied.
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4 Implementation
Let us summarize the technical problem and the main components of

the developed system. Given a proposition about relations in Coq, we want
to prove it using equality saturation, performed by the egg library in Rust.

A Coq plugin is a tool with external functionality, added to Coq. There
are two main approaches to writing Coq plugins:

• Ltac5 and Ltac26 are languages that help to write simple plugins,
combining basic combinations of tactics and actions into a single tac-
tic. It is useful, but not powerful enough to write complex plugins.

• The most traditional way of building new complex tactics is to write
a Coq plugin in OCaml.

Coq’s compiler is written in OCaml, so plugins written in OCaml allow
to extend Coq’s grammar, along with adding complex logic to the tactic,
e.g. using FFI to call external libraries. That is exactly what we need. To
have a better understanding of how all the components interact with each
other in our work, we provide a diagram in Figure 5.

COQ PROOFVIEW OCAML PLUGIN RUST

EGGEXPL PARSER

EC s-expr

RecExpr<RelLang>

s-expr

List<(String, Dir)>

tac monad

Figure 5: Components of the system

5https://coq.inria.fr/refman/proof-engine/ltac.html#ltac
6https://coq.inria.fr/refman/proof-engine/ltac2.html#ltac2
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A term with a proposition to prove is extracted from Coq Proofview
using Coq-Api. We receive it in OCaml as an EConstr (EC), which is a
basic type to store terms in Coq. Expression is parsed into a smaller custom
type and transferred to Rust. Rust makes data ready to be used by egg and
runs an equality saturation algorithm. After that, the proof is constructed
and returned to OCaml, conveniently packed. Finally, OCaml performs
changes in Coq Proofview.

4.1 Vernacular Commands
To extend Coq’s grammar with a new tactic or command, one should

write a .mlg file, where the tactic’s syntax is defined. Consider an example:

DECLARE PLUGIN ”coq-via-egg-plugin.plugin”

VERNAC COMMAND EXTEND cegg_config CLASSIFIED AS QUERY
| [ ”Cegg” ”config” reference(r) ] -> { ... }
END

TACTIC EXTEND cegg_solve
| [ ”Cegg” ”solve” ] -> { ... } (* Paring and interpretation rule *)
END

In listing 4.1, we define a command called cegg_config and a tactic
called cegg_solve. A command is marked as QUERY, meaning it is a pure
function. Otherwise, it would have been marked as SIDEFF.

Definition 4.1 (Pure function) A pure function is a function where the
return value is only determined by its input values, without observable side
effects.

After the | symbol, we define the parsing rule and the interpretation rule,
separated by ->. The parsing rule itself is a set of terminals that are
matched against a string of tokens. The interpretation rule is a function
that is called when the parsing rule is matched. More on the .mlg file
format can be found in the Coq’s plugin guide 7.

7https://github.com/coq/coq/blob/master/doc/plugin_tutorial/tuto2/src/g_tuto2.mlg
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4.2 OCaml plugin
When our tactic is called from inside the Coq proof, firstly, we need to

extract the goal. Consider an example:

Lemma example (r : relation A) :
r^* ;; r^? ⌘ r^*.

Proof.
Cegg solve eq.

When we enter the interactive proof process, we see the following proof
state:

A : Type
r : relation A
============================
r^* ;; r^? ⌘ r^*

Current hypothesizes are located above the line and the conclusion of
the goal — is below. To interact with Coq from OCaml, we use the Coq-
Api8, which provides the widest spectrum of functionality. To extract that
information about the goal in OCaml we first enter the Proofview monad.

Definition 4.2 (Monad) Monads serve as a representation of computa-
tions. Consider a computation to be similar to a function that transforms
an input into an output, but with an additional component. This compo-
nent represents the effect that the function has as a consequence of being
executed.

In the following function, t denotes the goal. enter applies the goal-
dependent tactic, with (t -> unit tactic) type in each goal indepen-
dently.

val enter : (t -> unit tactic) -> unit tactic

Now we see that our tactic, all in all, should be a function that takes
a goal (Proofview.Goal.t) as input and return a tactic monad (unit
tactic). When we have such a function, enter will apply it to each goal.

8https://coq.github.io/doc/V8.16.0/api/coq-core/index.html
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Having a gl : Proofview.Goal.t as input, we need to split it into the
conclusion, hypotheses, and the environment, using functions concl, hyps,
and env respectively. The most import for us is the concl, which we will
get. It has an EConstr.constr, which is the most important datatype in
Coq, namely the kernel term. It is used to represent expressions, which are
built using a set of constructors that correspond to the different types and
operations.

Our next task is to prepare the conclusion for the egg use. Econstr.t
(similar to Econstr.constr) has a huge list of constructors, but we are
not expecting to handle most of them. For example, constructors such as
Forall or LetIn are not something we expect to see in a proposition about
relations. From the limitations of what kind of rules we can pass to egg we
can infer that we want to handle particular relations and various operations
on them, i.e. applications of functions. Moreover, after analyzing the Hahn
library and the imm code base, we have decided to add some concrete
relations as constants: An empty relation, denoted as (fun_ _ => False),
which means that any two elements of the given set are related, and a full
relation, denoted as (fun _ _ => True). Thereby the constructors we are
interested in are as follows:

type Econstr.constr =
| App of ’constr * ’constr array
| Var of Names.Id.t
| Lambda of Names.Name.t Context.binder_annot * ’types * ’constr
| Ind of Names.inductive * ’univs (∗ Inductive constructors, e.g. True or

False ∗)

The conclusion of the goal is split by the equivalence sign into the lhs
and the rhs of the equation. Both sides are individual Econstr.t’s that
will be passed to Rust as two terms separately. Econstr.t is parsed into
a smaller type. If unexpected constructors occur in the expression, an
exception is raised and an error is shown to the user. Inductive constructors
are handled only in case of True or False, which are parsed as Symbols. A
Data type is an s-expression over strings, with addition of lambdas:

type goal_s_expr =
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| Symbol of string
| Application of string * goal_s_expr list
| Lambda of goal_s_expr * goal_s_expr

The next step is to pass an object of type goal_s_expr to Rust for
further processing. We use the ocaml-rs [2] Rust library to set up com-
munication between OCaml and Rust. A similar type as goal_s_expr is
defined in Rust:

pub enum GoalSExpr {
Symbol(String),
Application(String, LinkedList<GoalSExpr>),
Lambda(Box<GoalSExpr>, Box<GoalSExpr>),

}

4.3 Using Egg
Now we want to define an e-graph, which egg will operate with. EGraphs

are parameterized over the Language given by the user. We define a lan-
guage in the same notation as introduced in Section 3.3. We denote the
following language, which represents operations on relations:

define_language! {
pub enum RelLanguage {

”top” = Top, // Full relation
”bot” = Bot, // Empty relation
”complete_set” = CompleteSet, // Full set
”;;” = Seq([Id; 2]), // Relational composition
”+” = CT(Id), // Transitive closure
”?” = RT(Id), // Reflexive closure
”*” = CRT(Id), // Transitive-reflexive closure
”eqv_rel” = Eqv(Id), // Equivalence relation
”clos_sym” = CS(Id), // Symmetric closure
”-1” = Transpose(Id), // Relational transposition
”clos_refl_sym” = CRS(Id), // Symmetric-reflexive closure
”||” = Union([Id; 2]), // Union of relations
”&&” = Inter([Id; 2]), // Intersection of relations
”sminus” = SetMinus([Id; 2]), // Set difference
Symbol(Symbol), // Concrete relations

}
}

Rust component receives two terms (lhs and rhs of the goal conclusion)
as input and translates both of them into RelLanguage. Then egg builds
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an e-graph for the lhs. After that, we aim to saturate the e-graph with
equivalences, so that it will represent a set of relations, equivalent to the
lhs. The equality saturation algorithm is parameterized with a set of rules.
We take useful theorems about relations from the Hahn library and define
a rewriting system in egg’s notation:

vec![
rewrite!(”ct_rt”; ”(;; (+ ?r) (* ?r))” <=> ”(+ ?r)”),
rewrite!(”rt_ct”; ”(;; (* ?r) (+ ?r))” <=> ”(+ ?r)”),
rewrite!(”cr_seq”; ”(;; (? ?r) ?r’)” <=> ”(|| ?r’ (;; ?r ?r’))”),
// ...

]

A rewriting system consists of named rules with patterns to search for in
the e-graph and terms to replace them with. ?r denotes an arbitrary term
named r and the <=> sign is a syntactic sugar for a pair of rules: a <=> b
is equivalent to a => b and b => a. Currently, we have chosen 51 rules for
the system. This is a trade-off between the completeness of the system and
the size of the e-graph it produces (more in Section 4.4). When the set of
rewrites is provided we run the equality saturation algorithm. It iteratively
searches for an lhs pattern to apply and expands the e-graph. More on
equality saturation in egg could be found in the paper [17] and a pseudocode
is given in egg’s tutorial 9. Having a saturated graph, to check two terms for
equivalence we can call a built-in function egraph.equivs(expr1, expr2).

4.4 Naive implementation complexity
If we follow the naive algorithm strategy to build an e-graph, we can

bump into a problem. Unfortunately, choice of the rules has a massive im-
pact on performance. Even though e-graph as a data structure was designed
to store a potentially infinite number of terms, some rule combinations can
lead to uncontrolled growth. Consider an example:

vec![
rewrite!(”rt_begin”; ”(;; (? ?r) (* ?r))” <=> ”(* ?r)”),

]

9https://docs.rs/egg/latest/egg/tutorials/_01_background/index.html
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If we have a rewrite system with just one rule: Listing 4.4, and we build
an e-graph for expression r* ;; r?, we get a tiny e-graph with 5 nodes,
e-graph is shown in Figure 6.

r

?

;; *

;;

Figure 6: Saturated e-graph for r* ;; r? with just one rule

However, if we add another rule to the system, the saturation algorithm
will not terminate, if we do not set the node/iteration limit. We add an
associativity rule for the ;; operator, for simplicity it will be unidirectional:

vec![
rewrite!(”rt_begin”; ”(;; (? ?r) (* ?r))” <=> ”(* ?r)”),
rewrite!(”seqA”; ”(;; ?a (;; ?b ?c))” => ”(;; (;; ?a ?b) ?c)”),

]

With associativity, e-graph explodes with new e-classes, that cannot
be defined recursively anymore. For example, we get the following set of
equivalences:

r* ⌘ (r? ;; (r? ;; r?)) ;; r*
⌘ r? ;; r*
⌘ (r? ;; r?) ;; r*
⌘ ((r? ;; r?) ;; (r? ;; r?)) ;; r*

The highlighted subterms in the left parts of the expressions are not
equivalent to each other, but they appear in the e-graph during the satura-
tion.

25



All in all, the problem is as follows. Expanding rules in tandem with
rules that reorder nodes, such as commutativity or associativity, can lead
to an infinite growth of the e-graph. There are several ways to solve this
problem. We have come up with various approaches and will discuss them
in detail in Section 4.4.1. Some of the strategies are implemented in our
plugin and are available for the user.

4.4.1 Proof Strategies

A less general, but more efficient solution may be to manually schedule,
how many times particular rules should be applied. If we are trying to prove
that a ⌘ b and to do so we build an e-graph for a and search for b in it, we
can use “expanding” rules only for terms that are smaller than b. However,
in this thesis, we will focus on more general, but more heuristic approaches.
We are still working on providing the user with various trade-offs between
efficiency and completeness, all of which can be easily toggled within the
plugin.

All solutions assume that we completely opt out of bidirectional rules
and orient all of them in the direction of the smaller term. It shrinks the
range of problems we can solve but significantly reduces the time complexity
of the algorithm. To prove a ⌘ b, we can build an e-graph for a and search
for b in it and vice versa. Alternatively, we can build both e-graphs and
check their intersection to be non-empty. If we find an element that is
equivalent to both a and b, we can conclude that a ⌘ b and construct a
proof.

4.5 Retrieving proofs in Coq
After we finish saturating the e-graph and find out whether two expres-

sions are equivalent in it, we can use egg’s explain_equivalence(expr1,
expr2) function to get the proof. The output will be a series of s-expressions
annotated with the rewrite being performed. Consider an example, showing
how (/ (* (/ 2 3) (/ 3 2)) 1) (or (23 · 3

2)/1) can be simplified to 1:
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(/ (* (/ 2 3) (/ 3 2)) 1)
(Rewrite<= div-one (* (/ 2 3) (/ 3 2)))
(* (Rewrite=> unsafe-invert-division (/ 1 (/ 3 2))) (/ 3 2))
(Rewrite=> cancel-denominator 1)

This sequence of s-expressions is parsed to a list of tuples with names
of theorems to apply and directions (forward or backward) in which to
apply them. This data is returned to OCaml, OCaml consequently applies
the rewrite tactic with given theorems inside the goal and concludes the
proof using the reflexivity tactic. This is how we automate the proof of
equivalence of two expressions in our plugin.

4.6 Plugin configuration
By that moment we have described the ideas and the most important

parts behind the algorithm that checks two terms for equivalence using
egg. Along with that, the plugin supports the functionality to provide egg
with user-pre-defined rewriting rules, in complement to the ones we have
defined ourselves. For that, the vernacular command (more on vernacular
commands in Section 4.1) cegg_config is provided. The set of theorems
with which we configured the egg consists of statements about abstract re-
lationships. In addition to them, in order to prove more substantial facts,
it is necessary to use axioms of specific relationships with a stable mean-
ing. Such axioms are usually combined into a set called well-formed (WF).
Consider the following example.

Variable rf : A -> A -> Prop.
Variable mo : A -> A -> Prop.
Notation ”’fr’” := ( rf�1 ;; mo).

Record Wf :=
{

rf_mo : rf ;; mo ⌘ ? ;
rf_rf : rf ;; rf ⌘ ? ;
mo_rft : mo ;; rf�1 ⌘ ? ;
mo_fr : mo ;; fr ⌘ ? ;
fr_fr : fr ;; fr ⌘ ? ;

}.
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Cegg config Wf.
Listing 1: Well-formed example

The object with axioms is created, then passed to the OCaml plugin,
WF is checked to contain only relational equivalences, then it is transferred
to Rust, where it is cached in the build folder. Afterwards, these axioms
would be used along with pre-defined ones to prove theorems.
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4.7 Evaluation
Unfortunately, we cannot demonstrate the usability of the created tool

to prove any popular substantive results. An example of such a result could
be proving the equivalence of two definitions of the eco relation. Consider
a slightly modified Listing 1.

Variable rf : A -> A -> Prop.
Variable mo : A -> A -> Prop.
Notation ”’fr’” := ( rf�1 ;; mo).

Notation ”’eco1’” := (rf [ mo [ fr)^+.
Notation ”’eco2’” := (rf [ (mo ;; rf^?) [ (fr ;; rf^?)).

Record Wf :=
{

mo_trans : mo ;; mo ✓ mo ;
rf_mo : rf ;; mo ⌘ ? ;
rf_rf : rf ;; rf ⌘ ? ;
mo_rft : mo ;; rf�1 ⌘ ? ;
mo_fr : mo ;; fr ⌘ ? ;
fr_fr : fr ;; fr ⌘ ? ;

}.

Implicit Type WF : Wf.

Lemma eco_eq WF :
eco1 ⌘ eco2.

Proof.
Listing 2: Eco equivalent definitions

Despite the fact that we need to prove the equivalence of two relations,
one of the properties we need to use along the way is mo_trans, which was
added to the WF in Listing 2. In the process of proof, we inevitably need to
use inclusions of one relation into another, which unfortunately our plugin
cannot do automatically. Based on our work, we have concluded that for
verified automated proofs of equivalences, we frequently require to operate
with inclusions of relations, which our approach is not capable of. In order
to adapt the equality saturation approach to our task, we need to improve
the e-graphs so that they can store asymmetric rewrites.

Nevertheless, the created solution can solve simple subtasks and simplify
work in a limited set of cases, when all intermediate steps involve only
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equivalence rewrites, for example, consider taking Listing 1 and trying to
prove the following Lemma:

Lemma eco_sub WF (r : relation A) :
(fr [ mo) ;; (fr [ mo) ⌘ fr ;; mo [ mo ;; mo.

Proof.
rewrite -> seq_union_r.
rewrite -> seq_union_l.
rewrite -> fr_fr.
rewrite -> mo_fr.
rewrite -> union_false_l.
rewrite -> union_false_l.
rewrite -> seq_union_l.
all: auto.

Qed.

Lemma eco_sub’ WF (r : relation A) :
(fr [ mo) ;; (fr [ mo) ⌘ fr ;; mo [ mo ;; mo.

Proof. Cegg solve eq. Qed.

It takes 7 rewrite calls to prove this lemma by hand, but it takes only
about 600ms for our tool to solve it automatically. Here we have used
the proof strategy where all rules are bidirectional. Strategies without ex-
panding rules (described in Section 4.4.1) are usually executed in less than
100ms.

Here are some other simple examples of what we can solve using the
developed tool:

Lemma test_with1 (r : relation A):
((r ;; r^*)^?)^+ ;; ((r^?)^?)^+ ⌘ r^*.

Proof. Cegg solve eq. Qed.

Lemma test_with2 (r : relation A):
(r^?)^+ ;; ((r^?)^?)^+ ⌘ (r^?)^+ ;; (r^?)^*.

Proof. Cegg solve eq. Qed.

Lemma test_with3 (r : relation A):
((r^?)^+ ;; ((r^?)^?)^+)^+ ;; r^+ ⌘ r^+.

Proof. Cegg solve eq. Qed.

30



5 Conclusion and future work
We have implemented a Coq plugin, which uses fast and lightweight egg

Rust library, to automatically prove relational equivalences in Coq. We have
developed a framework for communication between Coq and Rust and made
a rule-parameterized algorithm on top of the egg library for producing a
series of rewrites that is used in Coq interactive proofs. Moreover, we
have experimented with various proving strategies and rewriting systems to
implement an efficient and useful tool.

However, our experiments and benchmarks show that egg, along with
its approach of employing e-graphs to solve rational equivalences, has not
been performing up to our expectations when tested on our initial examples
and problems. Therefore, in order to enhance the tool’s efficacy, we suggest
utilizing a different data structure that has the capability to preserve asym-
metric relations as the basis for the saturation algorithm. Alternatively, a
completely different approach should be taken into consideration.

We have defined multiple tools inside our plugin, that are used to inter-
act with the egg library:

• Cegg solve— a tactic that simplifies the lhs of the equation. It takes
the conclusion of the goal, retrieves the lhs of the equivalence, parses
it into an s-expression, and passes it to egg. Egg builds an e-graph E

for it and extracts the “best” term t from E. A sequence of rewrites
to achieve t is passed back to OCaml and is applied to the lhs of the
equivalence inside Coq proof mode.

• Cegg solve eq— a tactic that tries to prove the equivalence between
the lhs and rhs of the equation, using egg.

• Cegg config — a command, that allows configuring the ruleset for
egg. It takes a user-defined list of rewrite rules and caches it for the
later use in Cegg solve and Cegg solve eq.

As part of our future work, we plan to generalize our solution and extend
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its applicability to solve similar problems encountered by the autorewrite
tactic in Coq. It takes a library of theorems as input and automatically
tries to use it in order to prove the goal. Equality saturation has potential
benefits and can outperform the existing approaches.

The source code and documentation for the thesis are available at:

https://github.com/K-dizzled/relations-via-egg
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