
CoqPilot benchmarking framework

Gleb Solovev1,3[0009−0004−1116−7743], Nikita Khramov1,3[0009−0004−3968−4443],
Andrei Kozyrev1,3[0009−0004−3185−9368], and
Anton Podkopaev2,3[0000−0002−9448−6587]

first.last@jetbrains.com

1 JetBrains Research, Germany
2 JetBrains Research, Netherlands

3 Constructor University Bremen, Germany

Abstract. We present CoqPilot benchmarking framework tailored for
conducting the experiments involving LLMs and other techniques in Coq
proof-generation domain. This framework allows for seamless setup of
the experiment pipelines while ensuring the reliability and efficiency of
their execution, making it suitable both for small preliminary studies
and large-scale experiments. In addition to describing the benchmarking
framework and its features, we present the experiment results obtained
with it.

Keywords: LLM · Coq · code generation · benchmark

1 CoqPilot

CoqPilot [5] is a VS Code extension aiming to facilitate the process of writ-
ing Coq [3] proofs. It provides zero-setup experience and one-click generation,
combining the capabilities of several tools. The main use case of CoqPilot is to
complete the parts of the proofs marked with admit tactic. As the internals of
CoqPilot are already described [5] and are not the focus of this work, we will
not go further into the details of the plugin itself. Instead, we focus on CoqPilot
benchmarking framework features and usage.

2 Benchmarking Framework

The main purpose of CoqPilot benchmarking framework is to create a conve-
nient environment that allows researchers to experiment with different configu-
rations, LLMs, and techniques for Coq proof generation.

We enable users to create flexible and reusable pipelines for the experiments.
To introduce flexibility into the designing of the pipelines, we deliver domain-
specific language (DSL) for defining experiment targets (e.g., theorems to prove)
and models (configurable proof providers). The respective files are type-checked
using Coq-LSP [1] to find target theorems and gather contextual information.



2 A. Kozyrev et al.

Combining all defined targets and models produces a matrix of benchmarking
tasks. These tasks are executed asynchronously to optimize the performance.

One of the key features of the framework is its support for conducting both
small experiments for preliminary studies and large-scale evaluations.

To ease the setup and execution of many small experiments during proof gen-
eration approaches testing, we introduce several helpful functionalities. First, the
structured representations of type-checked files are cached to avoid the redun-
dant type-checking. Also, we deliver a fail-fast strategy: in case of failure in one
of the tasks, the whole pipeline terminates without waiting for other tasks to
fail. Finally, the logging captures all relevant events that appeared during the
execution of the pipeline in a real-time manner.

In the case of conducting large-scale experiments, reliability is crucial. Our
framework ensures that no benchmarking results are lost or invalidated. More-
over, if the proof provider is temporally inaccessible (e.g., due to temporal tokens
limits), the framework performs retries to acquire the proof eventually. It also
includes a resume-benchmarking feature to continue the interrupted pipeline.

3 Experiments

We have conducted several experiments using CoqPilot benchmarking frame-
work. We used the same data for the experiments as in [5]. We evaluated how
many of the selected theorems could be proven using different LLMs [2] and
methods [4], see Table 1.

Table 1. Benchmarking results

Reference proof length ⩽ 4 5 – 8 9 – 20 Total
Group size 131 98 71 300

firstorder auto with * 11% 2% 1% 6%

OpenAI GPT-4o 50% 26% 15% 34%
OpenAI o1 66% 31% 8% 41%
Claude 3.5 Sonnet 73% 41% 27% 51%
LleMMa 7B 24% 11% 1% 15%

Tactician (synth) 45% 23% 10% 29%

Using the framework, we limited the number of context theorems (theorems
with proofs sent to LLM as a few-shot prompt). The average number of con-
text theorems without limitation is 42, and the ratio of proved theorems is 40%.
We experimented with this parameter by using the OpenAI GPT-4o model on a
dataset subset of 50 theorems. With only 7 context theorems, the ratio of proved
theorems dropped to 28%. The framework also allows experimentation with dif-
ferent context theorem selection techniques. Using the technique measuring the
similarity between target theorem and context theorem goals based on TF-IDF
metric [6] instead of the default one based on the closeness to the target theorem,
the ratio of proven theorems with only 7 context theorems raised to 38%.



CoqPilot benchmarking framework 3

References

1. Arias, E.J.G.: Visual studio code extension and language server protocol for coq
(2022), https://github.com/ejgallego/coq-lsp

2. Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M.D., McAleer, S., Jiang, A.Q.,
Deng, J., Biderman, S., Welleck, S.: Llemma: An open language model for mathe-
matics. arXiv preprint arXiv:2310.10631 (2023)

3. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media
(2013)

4. Blaauwbroek, L., Urban, J., Geuvers, H.: The Tactician: A seamless, interactive
tactic learner and prover for coq (2020). https://doi.org/10.1007/978-3-030-53518-
6_17, http://dx.doi.org/10.1007/978-3-030-53518-6_17

5. Kozyrev, A., Solovev, G., Khramov, N., Podkopaev, A.: Coqpilot, a plugin for llm-
based generation of proofs. In: Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. pp. 2382–2385 (2024)

6. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation 28(1), 11–21 (1972)


