
CONSTRUCTOR UNIVERSITY BREMEN

Master of Science
Computer Science

Andrei Kozyrev

Similarity-driven Retrieval Mechanism for
Rocq theorems

Master’s Thesis

First reviewer:
Prof. Dr. Anton Podkopaev

Second reviewer:
Dr. Daniil Berezun

Bremen
2025

Statutory Declaration

Family Name, First Name Kozyrev, Andrei

Matriculation number 30006595

Kind of thesis submitted Master Thesis

English: Declaration of Authorship
I hereby declare that the thesis submitted was created and written solely by myself

without any external support. Any sources, direct or indirect, are marked as such. I am
aware of the fact that the contents of the thesis in digital form may be revised with regard
to usage of unauthorized aid as well as whether the whole or parts of it may be identified
as plagiarism. I do agree my work to be entered into a database for it to be compared with
existing sources, where it will remain in order to enable further comparisons with future
theses. This does not grant any rights of reproduction and usage, however.

This document was neither presented to any other examination board nor has it been
published.

German: Erklärung der Autorenschaft (Urheberschaft)
Ich erkläre hiermit, dass die vorliegende Arbeit ohne fremde Hilfe ausschließlich von mir

erstellt und geschrieben worden ist. Jedwede verwendeten Quellen, direkter oder indirekter
Art, sind als solche kenntlich gemacht worden. Mir ist die Tatsache bewusst, dass der
Inhalt der Thesis in digitaler Form geprüft werden kann im Hinblick darauf, ob es sich ganz
oder in Teilen um ein Plagiat handelt. Ich bin damit einverstanden, dass meine Arbeit in
einer Datenbank eingegeben werden kann, um mit bereits bestehenden Quellen verglichen
zu werden und dort auch verbleibt, um mit zukünftigen Arbeiten verglichen werden zu
können. Dies berechtigt jedoch nicht zur Verwendung oder Vervielfältigung.

Diese Arbeit wurde noch keiner anderen Prüfungsbehörde vorgelegt noch wurde sie
bisher veröffentlicht.

. .
Bremen, May 20th, 2025 Andrei Kozyrev

2

Abstract
Interactive theorem proving has repeatedly shown to be fruitful in various

domains with critical infrastructure; however, writing formal proofs remains
a challenging task, requiring complex reasoning. In this work, we utilize
Large Language models to solve the problem of generating formal proofs and
explore currently existing approaches for Retrieval Augmented Generation in
this domain. We propose a novel approach for extracting relevant premises
from a large corpus of Rocq proofs, leveraging retrieval via a self-attentive
embedder model. We evaluate the performance of our proposed solution
and achieve a relative improvement of up to 28% over the baseline. This
work also contains a detailed analysis of the results and the limitations of
our approach.

3

Acknowledgements
I would like to express my deepest gratitude to my Academic supervisor

and colleague, Anton Podkopaev, for his invaluable guidance and support
throughout the course of this thesis. I thank Daniil Berezun for reviewing
this thesis and providing insightful feedback. I would also like to sincerely
thank my supportive friends and colleagues, who have been there for me
during this journey. Their encouragement and assistance with specific parts
of this research are not to be overlooked. I am grateful to my family for
their unwavering support and encouragement, which has been a constant
source of motivation for me.

4

Contents
Abstract 3

Acknowledgements 4

Introduction 6
1.1. Objectives . 9
1.2. Proposed approach . 10

2. Related Work 13
2.1. Rocq datasets . 13
2.2. Rocq’s system . 14
2.3. Retrieval Augmented Generation 15
2.4. Evaluation dataset . 16

3. BigRocq 17
3.1. Implementation . 18
3.2. Usage . 20

4. Embeddings 23
4.1. Work justification . 23
4.2. Modeling . 25
4.3. Training hyperparameters 28
4.4. Training resources . 29

5. Evaluation 31
5.1. Experiment resources . 33

6. Conclusion 34
6.1. Future Work . 34

References 36

5

Introduction
Testing software has always been an essential part of Software Engineering.

Creating reliable software is a challenging task, but it is a must in many
domains with no space for mistakes. For some specific domains, such as
Aviation, Medical Software, Banking, and others, reliable software is a matter
of people’s lives. There were cases when software bugs in such domains led
to catastrophic consequences [7, 22].

Formal software verification ensures the correctness of software under
some given specifications. When this specification is precise, complete, and
unambiguous, formal verification gives developers stronger guarantees than,
for example, unit/integration testing. To date, there exists a number of
Software Verification systems or Interactive Theorem Provers (ITPs), such
as Rocq (former Coq) [3], Agda [17], Lean [6], Isabelle [24], and others. Such
a system helps users specify properties of their programs and then prove
that these properties hold using formal logic.

Rocq is a mature ITP that has existed for more than 30 years. Rocq
has proven its usability through a number of projects, both in Academia
and Industry. For instance, CompCert [20] is a formally verified C compiler
written in Rocq. CompCert was the only C compiler where a sufficient
study found no bugs. Rocq is also used to develop CertiKOS [14], a formally
verified operating system kernel. In Academia, Rocq is used in several
projects, such as the first proof of the Four Color Theorem, accepted by the
mathematical community [13], a recently published new work on a Relaxed
Memory Model [23], and many more [15, 26].

A typical pipeline of writing proofs in Rocq is to state the theorem and
then prove it step-by-step. At each step, Rocq’s system allows the user to
observe the current state of the proof. It contains a goal we want to show is
correct and a list of hypotheses under which the goal is to be proven. At
each step, the user applies so-called tactics that transform the current goal.
Tactics are elementary building blocks for the proof, that can simplify the
goal, apply some domain-specific reasoning, destruct the goal into smaller

6

subgoals, and so on.

Software verification has proven to be fruitful, but it is a time-consuming
process. Writing proofs in Coq is a challenging task and requires considerable
experience from the programmer [28]. This explains the high demand for
tools that help automate the process of writing proofs.

Some generative tools for Rocq and other ITPs utilize classical reasoning
methods, some — machine learning techniques. CoqHammer [5] translates
Rocq’s logic into first-order logic and performs the proof search. Tactician [4]
contributes a tactic for different proof search strategies and implements
the K-Nearest Neighbours (K-NN) algorithm for proof search. Recently,
studies [18, 10, 33, 29] have shown that machine learning could also be
successfully applied to the problem of proof synthesis and results in a
fascinating symbiosis with Formal Methods.

CoqPilot [18] — one of the remarkable works in the domain, is a VSCode
plugin allowing users to generate Rocq proofs seamlessly. CoqPilot utilizes
the power of Rocq’s system and its ability to automatically validate generated
code and combines it with the generational capabilities of modern LLMs.
CoqPilot was designed to serve as a framework for combining multiple
proof generation methods and seamlessly incorporating them into a single
user-friendly pipeline for proof synthesis.

CoqPilot’s generation engine is a powerful combination of valuable tools
that can be used in a single pipeline. In addition, CoqPilot serves as a
platform for experiments and allows for easy benchmarking of different
approaches. Therefore, CoqPilot is a great choice when one wants to
implement and test new proof generation methods.

Many approaches call attention to the use of premise selection, i.e.,
retrieving relevant information from the context to advance generation.
LeanDojo [34] is a retrieval-based generation approach for Lean, which
generates proofs for theorems step-by-step. On each step, it retrieves
relevant premises from the large corpus of Lean proofs, which is prepared

7

in advance. LeanDojo implements a beam-search algorithm on top of the
tactic generator to navigate the proof space, which is a common approach
in the field of proof synthesis. LeanDojo has shown that the retrieval-based
generation can outperform strong baselines, highlighting the importance
of premise selection. Another vital research in the context of this work is
Rango [30]. Rango’s authors have measured how different retrieval methods
of premise selection affect the generational capabilities of the model. hint
selection is formulated as follows: given a proof state S, we suppose that
to proceed with the proof, we want to apply some tactic with an unknown
positional argument.

apply ⌧1. or destruct ⌧2.

The problem of hint selection is to yield such potential premises ⌧ that might
be used in the tactic. Potential premises might be auxiliary lemmas, defini-
tions, objects, etc. The result is afterwards fed into the tactic-generation
model/mechanism.

Most works on premise selection in ITPs focus on lemma selection.
However, authors of Rango show that on their CoqStocq dataset (introduced
in the same paper), hint selection provides minimal improvement over the
baseline. On the contrary, works [18, 30] present the mechanism called
proof selection. Problem of proof selection is formulated as follows; given a
target theorem statement S, a generator model m, and a large dataset of
already proven theorems [s0, p0] , . . . , [sn, pn], we want to choose a subset of
those theorems {[si, pi]}, so that we maximize the possibility, that model
m will correctly solve statement S, considering {[si, pi]} as the context.
Evaluation in both CoqPilot and Rango works shows that proof selection
brings invaluable profit to the generator. However, both approaches limit
their proof selection mechanisms to a simple baseline, that orders the
candidate theorems by decreasing lexical similarity of statements.

The main topic of discussion in this work is, ”How do we choose the
relevant theorems from the reference set to maximize the probability of
proving a theorem?”

8

This work builds on the existing research [18, 30], and introduces a
novel approach to proof selection in Rocq. We aim to train a self-attentive
embedder model to represent theorems in a vector space. The model
is supposed to be trained on a large dataset of Rocq statements with
respective proofs in such a way that the cosine similarity between the vector
representations in the latent space represents the similarity of the statements’
proofs.

During the process of collecting the dataset for our model, we encounter
a data scarcity problem in Rocq. There were attempts to create datasets
for Rocq, such as CoqGym [33], but the main problem is that Rocq is not
backward compatible. This means the proofs written in one version of Rocq
may not be valid in another. Rocq is extremely hard to build in different
versions, making the datasets hard to maintain and use. Alongside, there is
not that much Rocq data available online in general. In absolute numbers,
TheStack [16] dataset contains roughly 100 million tokens of Rocq code,
compared to more than 10 million files of Python code. One Rocq file could
be estimated to contain around 300 lines of code, each containing around 10
tokens.

In this work, we additionally aim to tackle Rocq’s data-scarcity problem
by introducing a data-augmentation tool that will run on a project and
generate additional dataset samples, each comprising a theorem and its proof
for every existing theorem. The tool is to convert proofs into tree-structured
representations and interact with the Rocq system via the Language Server
Protocol (LSP) [1] to synthesise new proofs.

1.1 Objectives
O1 Data-augmentation tool. Develop a CLI utility that

1. extracts every proof as a tree,
2. generates viewers for the proof trees,
3. generates the dataset in a format, compatible with model training

9

pipeline,
4. generates augmented .v files with freshly generated lemmas.

O2 Augmented Rocq corpus. Run BigRocq over public projects,
gather the original + synthetic theorem–proof pairs, and collect an
extensive dataset for training the model.

O3 Self-attentive premise ranker. Train a Transformer encoder whose
cosine similarity correlates with proof-level similarity.

O4 Evaluation. Evaluate the model on the CoqPilot benchmark and
show statistically significant improvements over the baseline.

1.2 Proposed approach
This work aims to create a Rocq data augmentation tool. We propose

an approach to generate new dataset samples for every theorem in a Rocq
project. Given a theorem T and its corresponding proof P , we can extract
a sequence of tactics ⌧1, ⌧2, . . . , ⌧n, used in the proof. In a simplified setting,
each tactic is applied to some proof state Si and transforms it into several
new states (possibly zero, meaning this proof branch is closed). We aim to
transform the linear structure of the proof into a tree-like structure, with
nodes representing proof states and edges representing tactics. In such a
tree, each subtree would represent a valid and independent new lemma, and
a depth-first search (dfs) traversal of the subtree would allow us to collect a
sequence of tactics that would lead to the proof of the lemma.

As an example of such conversion, consider the following simple theorem,
stating that any number is either equal to zero or not equal to zero:
Theorem test2nat1 : forall n : nat, n = 0 \/ n <> 0.
Proof.
intros n.
destruct n.
- left; auto.
- right; auto.
Qed.

10

The proposed solution will transform this linear structure into the fol-
lowing tree:

s2 []

s0 s1

s3 []

left; auto.

intros n.

destruct n.

destruct n.
right; auto.

For each theorem, such a procedure shall produce up to n new dataset
samples, where n is approximately equal to the number of tactics used in
the proof.

To effectively gather information about intermediate proof states, tra-
verse, and parse proofs, in this work, we utilize Rocq’s Language Server
Protocol (Coq-LSP) [1]. Language Server Protocol 1 is a protocol developed
by Microsoft that allows for a unified way of communication between a
language server and a client. A client is typically an Integrated Develop-
ment Environment (IDE). A Language Server operates on a given project,
stores states of open files, and provides features such as code diagnostics,
code completion, go-to-definition, and others. In order to efficiently collect
information about the Rocq project and its theorems, this work aims to
implement a higher-level module, wrapping Coq-LSP and providing required
abstractions for the data augmentation tool.

Using the developed tool, we mine a dataset of theorems with respective
proofs from existing open-source Rocq projects. We train an embedder
model on the produced dataset in the following way: we encourage the model
to learn the dependency between the similarity of the theorems and the
similarity of their proofs. We define proofs’ similarity as the modification
of Levenshtein edit distance (discussed in § 4), and train the model to
approximate this function, but using statements, instead of their proofs.
Given such a function, we can predict whether two statements have similar

1Language Server Protocol: https://microsoft.github.io/language-server-protocol/

11

https://microsoft.github.io/language-server-protocol/

proofs or not. In case of a positive prediction, that would mean that one is
a relevant premise for the other.

12

2 Related Work
In this section, we will discuss existing tools and approaches to proof

generation, including CoqPilot, describe existing Rocq datasets, briefly
introduce the reader to the Rocq proof assistant, and explain the basics of
Machine Learning (ML), Natural Language Processing (NLP), and Retrieval
Augmented Generation (RAG).

2.1 Rocq datasets
The largest attempt to create and use a Rocq dataset for machine learning

is CoqGym [33]. CoqGym includes 71k human-written proofs from 123
Rocq projects. CoqGym possesses several problems. Firstly, it relies on
the deprecated SerAPI2 library. SerAPI is a library for machine-to-machine
interaction with the Rocq proof assistant, with particular emphasis on
applications in IDEs. To use CoqGym, one could download the preprocessed
dataset (JSON files, no possibility to interact with Rocq files/Rocq’s System,
check new proofs in context, etc.) or use the scripts provided by the authors
to extract the dataset. This comes with a number of problems. Firstly,
SerAPI has been deprecated for a while, and the release 8.20 (dated July
2024) was officially the last release managed by the SerAPI team. Secondly,
the scripts for dataset extraction are not generalized enough and are poorly
maintained.

CoqGym was not the only attempt to collect a Rocq dataset. Work [11]
by Andreas Florath describes a dataset collected implicitly to enhance
LLMs’ proficiency in interpreting and generating Rocq code. The dataset
consists of around 10K Rocq source files. Charles Norton has also recently
addressed an issue of Rocq datasets and proposed Coq-MetaCoq3 and Coq-
MetaCoq-QA4 datasets. Nevertheless, the main issue persists. Coq is highly
version-dependent and not backward-compatible. This makes it hard to
maintain a dataset. We aim to close this gap by providing an easy-to-use

2SerAPI https://github.com/rocq-archive/coq-serapi
3Coq-MetaCoq https://huggingface.co/datasets/phanerozoic/Coq-MetaCoq
4Coq-MetaCoq-QA https://huggingface.co/datasets/phanerozoic/Coq-MetaCoq-QA

13

https://github.com/rocq-archive/coq-serapi
https://huggingface.co/datasets/phanerozoic/Coq-MetaCoq
https://huggingface.co/datasets/phanerozoic/Coq-MetaCoq-QA

and adaptable utility for Coq dataset augmentation.

2.2 Rocq’s system
At the moment, one of the widely used Integrated Development En-

vironments (IDEs) for Rocq is VSCode. VSCode implements support for
programming languages through implementing a Language Server Protocol
(LSP). There are two commonly used LSPs for Rocq: vscoq [8] and Coq-
LSP [1]. The latter one has been developed earlier and is used in our work.
From now on, we will refer to it as Coq-LSP.

To prove a theorem in Rocq, the user shall start by constructing a
specification, or theorem statement. We will proceed with a trivial example,
stating that for any natural number n, it is either equal to 0 or not equal
to 0, which we will denote as test2nat1. The user can start by typing the
following line in the editor:
Theorem test2nat1 : forall n : nat, n = 0 \/ n <> 0.
Proof.

Assuming that the Coq-LSP VSCode extension is installed, placing the
cursor at the end of the line, and navigating to the right panel of the editor,
users will see the following:
Goal (1)
============================
forall n : nat, n = 0 \/ n <> 0

This is the goal that is to be proven. Typically, hypotheses are located above
the line, and the conclusion of the goal is below. If we apply the intros.
tactic, that automatically introduces all hypotheses from the left side of the
conclusion to the context, the goal will be updated to:
Goal (1)
n: nat
============================
n = 0 \/ n <> 0

As with most proofs about natural numbers, we either proceed with induction
or with case analysis. In this case, as the theorem is trivial, we can use the

14

destruct, and cover two cases: (i) n = 0 and (ii) n 6= 0, this is reflected in
the following code:
destruct n. (* Two goals *)
- left; auto. (* No more goals. Focus next goal with bullet -. *)
- right; auto. (* No more goals. *)

The proof is complete when the conclusion is empty, as at the end of this
code. The proof environment could be exited by writing Qed. or Defined.
in the case of definitions.

By default, tactic expressions are applied only to the first goal. However,
Rocq provides a special syntax called goal selectors5, that allows to apply
tactics to any goal, goal sequence, goal range, or even to all goals. We could
rewrite the proof from our example as follows:
Theorem test2nat1 : forall n : nat, n = 0 \/ n <> 0.
Proof.
intros n.
destruct n as [|n'].
all: try (left; auto) || (right; auto).
Qed.

The prefix all: indicates that the tactic should be applied to all goals.

2.3 Retrieval Augmented Generation
Premise selection has been a long-standing challenge in the field of

Automated Theorem Proving. It was sufficiently covered in literature [19,
2, 31]; however, proof selection, as described in the Introduction, was
barely researched. The main reason for this is that applying Deep Learning
transformer models to ITPs is a relatively new field. Before the existence of
transformers, it was unclear how we could utilize similar proofs to generate
the target one. CoqPilot [18] and Rango [30] works have successfully
implemented a baseline proof selection into their generation pipeline. This
baseline works as follows. Given a target theorem statement S, a generator
model m, and a large dataset of already proven theorems [s0, p0] , . . . , [sn, pn],
assign a score to each potential premise [si, pi], according to their lexical state

5https://coq.inria.fr/doc/V8.18.0/refman/proof-engine/ltac.html#goal-selectors

15

https://coq.inria.fr/doc/V8.18.0/refman/proof-engine/ltac.html#goal-selectors

similarity similarity(S, si), and then select the top k most similar premises.
As shown in § 4, this approach is not optimal, as similar statements do not
necessarily lead to similar proofs. Authors of Rango use a similarity-based
metric, BM-25, while CoqPilot uses the Jaccard-similarity index to tackle the
same problem. The two metrics are semantically and statistically the same.
In § 5, we will show how our approach outperforms the Jaccard-similarity
baseline by 28% in terms of the number of generated proofs, on a dataset of
300 theorems.

2.4 Evaluation dataset
For hypothesis testing and evaluation of our proposed approach we

decided to reuse the dataset from CoqPilot. It is limited to 300 theorems
from the IMM project [27], such limilation is suitable for us in terms of
computational and financial costs. Theorems are divided into three buckets
by difficulty, where the number of tactics in their human-written reference
proofs serves as a proxy for difficulty. Dataset is limited to proofs containing
no more than 20 tactics, reflecting CoqPilot’s original focus on subgoals and
shorter lemmas. Proofs of this length account for 83% of all proofs in the
IMM project. Bucket boundaries and sizes were chosen based on the original
distribution of proof lengths in the project; the resulting length ranges
are [1, 4], [5, 8], and [9, 20] tactics. Resulting group sizes are [131, 98, 71]

theorems. We call this collection of 300 theorems the IMM-300 dataset.
None of the theorems appear in the embedder’s training data (which only
contained partial goals, not full statements).

16

Theorem test :
forall n : nat,
n = 0 \/ n <> 0.
Proof.
intros n.
destruct n.
- left; auto.
- right; auto.
Qed.

s2 []

s0 s1

s3 []

left; auto.

intros n.

destruct n.

destruct n.
right; auto.

Lemma s1 (n : nat) : n = 0 \/ n <> 0.
Proof.

destruct n.
- left; auto.
- right; auto.

Qed.

Lemma s2 : 0 = 0 \/ 0 <> 0.
Proof. left; auto. Qed.

Lemma s3 (n : nat) : S n = 0 \/ S n <> 0.
Proof. right; auto. Qed.

Figure 1: Processing theorems into trees. si denotes a state

3 BigRocq
If we recall the example from § 2.2, we could notice that even though

the proof is linear, it rather has a tree rather than a sequential structure.
On an example from § 2.2:
Theorem test :
forall n : nat,
n = 0 \/ n <> 0.
Proof.
intros n.
destruct n.
- left; auto.
- right; auto.
Qed.

When we applied the destruct tactic, we created two branches of the proof.
Proof state at that moment is as follows:
Goal (1)

============================
0 = 0 \/ 0 <> 0

Goal (2)
n nat
============================
S n = 0 \/ S n <> 0

Due to the nature of Rocq proofs, we could transform most of them (limi-
tations discussed in § 3.1) into trees, where nodes will be states and edges
— transitions between them. If we fix a node and traverse its subtree, we
will obtain a proof for the node. From a single theorem with a proof of
length l, we could extract l new auxiliary lemmas with respective proofs.
This procedure is depicted in Figure 1. We call the proposed tool BigRocq

17

and make it publicly available as a standalone component of our system. It
is located in the mono-repo of the project at https://anonymous.4open.
science/r/E60E/big-rocq/README.md. BigRocq takes a Rocq project as
input, iterates over proven theorems in it, and generates a set of auxiliary
lemmas with respective proofs. It produces new Rocq files containing the
freshly generated lemmas listed above, source theorems so that the user can
quickly open the file inside the IDE and ensure that the generated lemmas
correctly type-check. Additionally, BigRocq generates visualizations for all
of the built trees, so that one can explore them in a more user-friendly way.
Packed with statistics, such as elapsed time, success rate for tree building
and success rate for verifying proofs, everything is stored to the desired
location.

3.1 Implementation
BigRocq is implemented in TypeScript due to two reasons: (i) it is a

natural choice for a language client, it possesses a rich set of libraries for
automating client-server communication routine, and (ii) we wanted to re-use
some parts of the CoqPilot project, which is implemented in TypeScript.

We use Coq-LSP as the backbone of our system. At the second level
of abstraction, we wrap it into an interface, allowing us to conveniently
communicate with Rocq’s system. One of the difficulties we had to overcome
is that Coq-LSP, as most LSPs, is designed to communicate with IDEs, not
users nor CLIs; therefore, the set of provided API calls is not adapted for our
specific use. We implement a set of heuristics on top of the server to adapt
it to our needs. The resulting object contributes the following methods:

getGoalsAtPoint(
position: Position,
documentUri: Uri,
version: number,
command?: string

): Promise<Result<GoalConfig<PpString>, Error»;

18

https://anonymous.4open.science/r/E60E/big-rocq/README.md
https://anonymous.4open.science/r/E60E/big-rocq/README.md

getRocqDocument(uri: Uri): Promise<FlecheDocument>;

withTextDocument<T>(
documentSpec: DocumentSpec,
block: (
openedDocDiagnostic: DiagnosticMessage
) => Promise<T>

): Promise<T>;

The first method allows us to obtain the goal at the cursor position. The
second one is used to request the internal representation of the document,
stored inside Coq-LSP, and is then used to parse it. The third method is
a wrapper around the Coq-LSP API that allows working with a document
under the decorator. It handles opening and closing the document, correctly
working with its state, and waiting for the server to do type-checking.

BigRocq implements a simple cycle over files inside the project, automat-
ically typechecks these files, and parses them into an internal representation.
We attempt to construct a proof tree for each of the parsed theorems. We
start from a tree with a single node — the initial proof state of the theorem.
We iterate over tactics used in the proof, and with each new tactic, we
extract the proof state before and after its application and add new nodes
to the tree. It is done via the following naive algorithm:

(* Destruct the number of goals before and
after tactic application: (NUM_B, NUM_A) *)
match numbers_of_goals with
| case(NUM_B = NUM_A): create edge B_0 -> A_0; break
| case (NUM_B - 1 = NUM_A): create edge B_0 -> []; break
| case (NUM_B + k = NUM_A): (* Tactic creates new goals *)
create edges for i in 0..k B_0 -> A_k

The nature of this algorithm is explained by the fact that we do not get
much information from the Coq-LSP. We can only retrieve the list of goals
at the given point. We do not possess goal IDs, etc.

Unfortunately, the described algorithm has limitations. The issue is that

19

when goal selectors (described in § 2.2) occur, we can no longer determine
how to proceed with building our proof tree. We have a snapshot of the list
of currently unsolved goals before and after the application of the tactic,
but, in the current implementation of Coq-LSP, we are unable to figure out
which goals have transformed into which; therefore, we are unable to build
the tree. This problem was also described in CoqGym [33] work. This work
possesses the same limitation. Fortunately, the portion of theorems that use
goal selectors is small, and we can ignore them. Along with goal selectors,
we cannot process theorems with existential quantifiers, as they break the
hypothesis that two different goals are independent from one another.

For each theorem in the project, we either successfully produce a proof
tree or reject the theorem with a reason, such as goal selector or proof is
unfinished. Afterward, we will proceed with validating all newly generated
theorems. By default, we assume that all of them should be valid, but,
for example, existential quantifiers are only detected during these checks.
This process is packed with heuristics and unintuitive procedures due to the
nature of Coq-LSP. A pseudo-algorithm, illustrating the validation process,
is presented in Algorithm 1. Then we proceed with generating visualizations
for the trees in a collection of static HTML files. Packed with the serialized
dataset, Rocq .v files, and run statistics, everything is stored in a requested
location.

3.2 Usage
On an example of the IMM project, we will demonstrate the use of

BigRocq. BigRocq provides a simple yet flexible CLI that lets you point
it at your Coq sources, specify where to write out the augmented proofs,
and select the coq-lsp server binary you wish to drive. After installing all
dependencies, the minimal invocation looks like this:

npm run augment – -targetRootPath <path>
-workspaceRootPath <path>
-coqLspServerPath <path>

20

Algorithm 1 Check Generated lemma for the theorem
1: procedure CHECKLEMMAS(Theorem)
2: GlobalVars DETERMINEGLOBALS(Theorem)

3: CREATEFILE ()
4: INSERTPREFIX (Theorem, File)
5: Results []

6: for all ` in GENERATEDLEMMAS do
7: U `.Hyps \ GlobalVars
8: `0 SETHYPS(`, U)
9: INSERTAFTERPREFIX (`0, File)

10: TYPECHECK (File)
11: Diags GETDIAGNOSTICS()
12: Results.APPEND(h`0,Diagsi)
13: REMOVELEMMA (`0, File)
14: end for
15: return Results
16: end procedure

Under the hood, BigRocq will recursively scan your workspace, spin up a
dedicated coq-lsp process, and automatically type-check and instrument
every proof. All of this happens without further manual intervention, so
you can leave the tool to run over hundreds of definitions and theorems
unattended. Figure 2 shows an example of the produced statistics: the
ratio of successfully augmented nodes, the ratio of successfully build proof
trees, the avarage length of among newly generated proofs, and how did the

Figure 2: IMM BigRocq statistics

21

Figure 3: IMM BigRocq tree

number of lines of code change after augmentation.

With such output, one can quickly spot which parts of the development
yield the richest augmentation opportunities, compare proof-length trends
across modules, or even export the data for downstream machine-learning
experiments. An example of the proof tree visualization is presented in
Figure 3. The tree is interactive, and allows to expanding and collapsing
nodes.

22

4 Embeddings
This section will cover the procedure of building the embeddings for

the Rocq statements. We start with an extensive motivation for the task,
then describe the process of mining the dataset of Rocq statements, and
afterwards discuss the training process of a self-attention model to learn
the embeddings of the Rocq statements. We call our proposed embedding
model RocqEta. In § 5, we assess the effectiveness of the proposed approach.

4.1 Work justification
As already introduced in the Introduction, the primary goal of this

work is to improve methods of automated proof selection. Proof selection
is formulated as follows. Given theorems {Ti} and statement s⇤, it means
choosing other statements with their respective proofs, so that their presence
in the context of the generation request would help the model with the
generation of the proof for statement s⇤. Assumption 1 is that the model
benefits from seeing similar proofs to the one it is trying to generate. Proof
selection methods in existing literature [18, 30] are based on the assumption
that if statements s⇤ and si are similar, their respective proofs p⇤ and pi are
similar as well, we will call it Assumption 2:

similarity(s⇤, si) =) similarity(p⇤, pi) (2)

Therefore, assuming that the model will benefit from seeing proofs of similar
statements. However, we show that this assumption often does not hold.
A trivial illustration of it is that a single statement can have multiple very
diverse proofs.

To further illustrate the problem, we conduct an experiment where we
calculate how statement similarity correlates with proof similarity on large-
scale data. At first, we define statement similarity as a commonly used
BM-25 similarity metric, and proof similarity as a modified version of the

23

Levenshtein edit distance:

DL(pi, pj) =
Lev(pi, pj)
max(li, lj)

, DJ(pi, pj) = 1� |pi \ pj|
|pi [pj|

,

proof_distance(pi, pj) = ↵DL(pi, pj) + (1� ↵)DJ(pi, pj) + �

where pi is a viewed as a list of tactic pi = [taci0, . . . , tacim], li is the length
of the proof. DJ is a Jaccard distance; it is added for robustness. ↵ is a
hyperparameter that controls the balance between the two metrics, and � is a
small random noise added to the distance to avoid overfitting. Alternatively,
we also measure the correlation with the BM-25 metric used to measure
proof similarity.

Considering all 1927 theorems from the IMM project we get 1,855,701
pairs of theorem. We calculate the correlation between the statement
similarity and proof similarity. BM25-based statement similarity is weakly
and negatively associated with Levenshtein-based proof distance (Pearson
r = �0.154, Spearman ⇢ = �0.171). BM25-based proof similarity yields
an almost zero Pearson correlation (r = 0.029) and only a small positive
Spearman correlation (⇢ = 0.240), both effectively negligible. Pearson
correlation quantifies the strength of a linear relationship between two
numerical variables, whereas Spearman correlation evaluates the strength of
a monotonic relationship based on the ranked values of the variables [12].
Results highlight that Assuption 2 does not generally hold.

As the main objective of this work, we aim to find such a function f(si, sj)

that would correlate with similarity(pi, pj) strongly than sim(si, sj). First of
all, we conduct an experiment that determines whether such a function could
theoretically help us improve proof selection. We do hypothesis testing for
Assumption 0. We take the IMM-300 dataset and as we already have proofs
for all of them, we could perform so-called oracle premise selection. This
means that we will iterate through the theorems in the dataset, and for each
target theorem, we will take those theorems as premises that have the most
similar proofs to the target one. This method is called oracle, because at
test-time we don’t have access to the reference proof of our target theorem.

24

Ranker Jaccard Oracle
GPT-4o 29%± 3% 34%± 3%
Claude 3.5 38%± 3% 40%± 3%

Table 1: Oracle premise selection experiment.

We conducted the experiment to compare two methods of proof selection:
(i) Jaccard-similarity index over the statements, and (ii) Oracle premise
selection. The experiment was repeated 3 times to provide a 0.95 confidence
interval. The results are shown in Table 1. We have done generation with
two different models under the hood. Table 1 shows that the oracle premise
selection method outperforms the Jaccard-based method with both models.
This sets a valid ground for the next step of our work.

4.2 Modeling
We propose to use a self-attention encoder model [21] to learn the

embeddings of the statements. We assume that such a model could learn to
determine whether two statements have similar proofs or not.

To collect the dataset of Rocq statements, we take four large open-sourced
Rocq projects and augment them. These projects are: CompCert6, IMM7,
PromisingToIMM8, and XMM9. CompCert is one of the largest open-sorced
Rocq projects, providing a good amount of data, other three projects are of
particular interest to our research lab. These four projects have a total of
10,314 theorems. After augmenting them with BigRocq, we get a dataset of
76,524 theorems, more than 7 times the original dataset.

As already mentioned, Assumption 2 does not hold in general; however,
it holds in some cases, creating a strong baseline for our model. Due to that
and the restrictions of computational resources, we decided not to do full
training on the model but rather to fine-tune an existing encoder, which is

6CompCert: https://github.com/AbsInt/CompCert
7IMM: https://github.com/weakmemory/imm
8PromisingToIMM: https://github.com/weakmemory/promising2ToImm
9XMM: https://github.com/weakmemory/xmm

25

https://github.com/AbsInt/CompCert
https://github.com/weakmemory/imm
https://github.com/weakmemory/promising2ToImm
https://github.com/weakmemory/xmm

already trained on a large corpus of code. As such, we decide to take the
codebert [9] model.

CodeBERT is a Transformer-based model that learns to understand
both programming code and natural language together. Built on the same
architecture as RoBERTa-base (about 125 million parameters), it is trained
by masking out tokens in paired code and documentation, then teaching
the model to predict them. It also learns by spotting replaced tokens in
extensive, unlabeled code and text collections. This mixed training on
millions of code–text pairs and standalone code examples helps CodeBERT
capture the meaning of code and its comments, making it a strong starting
point for tasks like searching for code snippets or generating documentation.

On a tiny extra test dataset, consisting of 50 theorems with corresponding
hand-picked premises, raw CodeBert achieves an accuracy of 48%. This
corresponds to roughly the same accuracy for ranking performed using the
Jaccard-similarity metric on statements.

Given a dataset of pairs {(statementi, proof i)} and a proof-similarity
function f(proof i, proof j), we aim to learn a ranker

r : statement ⇥ statement ! R

That, given two Coq statements, predicts their proof similarity as closely as
possible to f . In
Crefsec:evaluation, we evaluate the proposed model on the following task:
for a target statement s⇤ and a set of already proven theorems, select the
top k premises and use them as context to generate a proof for s⇤.

T = {(pi, si)} , S = {si}
Topk(r, s⇤) = arg topk

(pi,si)2T
g(si, s⇤)

Solve(r, s⇤) = Solve
�
Topk(r, s⇤), s⇤

�
2 {0, 1}

Q(r) = Es⇤⇠D
⇥
Solve(r, s⇤)

⇤

26

(a) Correlation (b) Validation loss

Figure 4: Train metrics for different values of ksamples.

We optimize the model with the InfoNCE [25] loss. Concretely, for each
statement s, we compute proof-to-proof distances against other examples
during post-processing. One relevant question is, to which other examples
should we calculate distances? We could use all examples, resulting in a
quadratic number of pairs. However, it is unclear whether it is optimal.
Let us denote this hyperparameter as ksamples. We compare different values
of ksamples in Fig. 4. Considering the depicted results, we consider that
ksamples = 200 to produce the best results. Moreover, we decided to always
compute paired distances between statements from the same file, as they
are the most relevant ones. As 50 is a rough estimation of the number
of theorems in one file, we choose the default value of ksamples = 150, plus
always compute distances to the statements from the same file.

We label a pair as positive if its distance falls below a threshold ⌧pos, and
negative if it exceeds ⌧neg. Let P+

s and P�s be the resulting sets of positive
and negative pairs, and kneg the number of hard negatives (will be explained
in the next paragraph); then the per-statement loss term Ls is given by:

Ls = � log exp
�
'(zs, zp)/T

�

exp
�
'(zs, zp)/T

�
+

knegX

j=1

exp
�
'(zs, znj)/T

�

�
p 2 P+

s , nj 2 P�s
�

where ' is a cosine similarity between `2-normalized embeddings of state-
ments.

Because of the shape of the proof-distance distribution, training tended

27

(a) Pearson Correlation (b) Spearman Correlation

Figure 5: Correlation metrics for different kneg and w/o hard negatives.

to focus too quickly on easy negatives —– pairs whose proofs (and typically
their statements) are already far apart. To preserve informative gradients,
we inject hard negatives: with some probability, we label (sa, sb) as negative
whenever

⌧hardneg  sim(proofa, proofb)  ⌧neg.

Adding these harder negatives stabilizes training, yielding a gentler loss curve
and better overall generalization. We experiment with different values of kneg,
as well as the kneg parameter. Figure 5 shows the results of the experiments.
Figure 5 highlights the importance of hard negatives. Moreover, it provides
insights into the impact of the number of hard negatives on the model’s
performance. Here we obtain little fluctuation, but observe slightly better
results with kneg = 4, which aligns well with existing research [32].

4.3 Training hyperparameters
Table 2 summarizes the core model and data-processing choices we use

throughout training. We fine-tune the pretrained microsoft/codebert-
base encoder, projecting its hidden states down to a 768-dimensional em-
bedding and capping input sequences at 128 tokens. To create our splits, we
randomly assign 70% of examples to training, 20% to validation, and 10%
to testing. What is important is that we do the split by files, as we mainly
compute pairwise distances between statements from the same file.

During the InfoNCE loss post–processing, we mark proof-pairs as positive
when their distance falls below 0.3, negative when it exceeds 0.65, and treat

28

Parameter Value
base model microsoft/codebert-base
embedding dim 768
max sequence length 128
splitting strategy 70% train, 20% valid, 10% test
threshold pos. 0.3
threshold neg. 0.65
threshold hard neg. 0.45
hard negatives prob. 30%
knegatives in loss 4

Table 2: Model and Dataset hyperparameters

Parameter Value
algorithm AdamW (�1 = 0.9, �2 = 0.99, � = 1e�2)
schedule linear warmup (10) – cosine decay (90)
lr 4e�6
batch size (statements) 32
dropout 0.1

Table 3: Optimization hyperparameters

pairs with distance in [0.45, 0.65] as hard negatives with probability 30%.
We found that sampling four negatives per positive yields the best balance
between convergence speed and final performance.

Table 3 details the optimizer settings and regularization we employ. We
use AdamW with (�1, �2) = (0.9, 0.99) and a weight-decay factor of 10�2.
The learning rate is warmed up linearly over the first 10% of updates to a
peak of 4⇥ 10�6. Training proceeds with batches of 32 statements, and we
apply a dropout of 0.1 to the CLS embedding to guard against overfitting.

4.4 Training resources
During our final training run, the model consumed roughly 43 GB of

GPU-process memory and only about 6% of the host’s RAM. Over the
course of 13.5 hours on a single NVIDIA H100 accelerator (with 20 CPU

29

cores and 160 GB of system memory), disk usage grew steadily from 28 GB
to 76 GB as checkpoints and logs accumulated. GPU utilization stabilized
above 85% shortly after the warmup phase and remained near saturation
for the remainder of training, ensuring efficient use of the hardware. These
measurements demonstrate that our setup runs comfortably on a single
high-end GPU node with modest additional CPU and memory overhead.

30

Group 6 4 5 � 8 9 � 20
Ranker Jaccard RocqEta Jaccard RocqEta Jaccard RocqEta
GPT-4o 48%± 5% 51%± 5% 18%± 4% 25%± 3% 11%± 4% 11%± 5%
Claude 3.5 58%± 5% 61%± 4% 28%± 5% 36%± 5% 16%± 5% 21%± 5%

Table 4: Model performance under different ablations across all evaluation
sets.

5 Evaluation
To assess the efficiency of our proposed method, we conducted a series of

experiments using the CoqPilot benchmarking framework. CoqPilot allows
for easy setup and contributes to the reproducibility of our results.

We embed our retrieval mechanism RocqEta as a ranker in CoqPilot
and, as said in § 2.4, evaluate it on the IMM-300 dataset using different
underlying models. We benchmark against a baseline that orders candidate
theorems by decreasing Jaccard similarity: given a target statement s⇤ and
a pool of proven theorems {(si, pi)}, we compute

J(s⇤, si) =
|Ss⇤ \ Ssi|
|Ss⇤ [Ssi|

,

where each statement is tokenized using whitespace and punctuation, in
practice, this yields identical scores to BM25. For each target theorem, we
restrict candidates to the same file, rank them by either Jaccard or our
trained embedding ranker RocqEta, select the top k = 7 premises, and feed
them as a few-shot prompt to the model. We issue 12 generation attempts
per theorem, and mark it solved if any generated proof is accepted by Rocq’s
system. Our evaluation metric is the fraction of theorems successfully proved.
Table 4 demonstrates that RocqEta consistently outperforms the Jaccard-
based baseline across nearly all difficulty levels. The most pronounced
gains appear in the medium-difficulty group (proofs of 5–8 tactics), where
syntactic similarity signals begin to break down and semantic embeddings
capture deeper structural relationships. In the easiest group (proofs 6 4

tactics), both methods achieve high success rates, since short proofs tend

31

to follow predictable patterns and the Jaccard heuristic remains effective.
In the hardest category (proofs of 9–20 tactics), RocqEta continues to hold
its own. Under GPT-4o, both rankers achieve an 11% solve rate, but more
notably, with Claude 3.5, the RocqEta ranker improves from 16% to 21%, a
5% gain in an especially challenging setting. These results confirm that our
ranker excels on medium-difficulty theorems and remains competitive when
proofs grow longer and more varied.

Example in Figure 6 highlights the differences between different ap-
proaches to measure similarity between premises.
Lemma ext_sb_trans : transitive ext_sb.
Proof using.
unfold ext_sb; red; ins.
destruct x,y,z; ins; desf; splits; eauto.
by rewrite H2.

Qed.

Lemma ext_sb_irr : irreflexive ext_sb.
Proof using.
unfold ext_sb; red; ins.
destruct x; ins; desf; splits; firstorder.
lia.

Qed.

Figure 6: Theorems with dissimilar statements and similar proofs

If we measure the distance between theorems from Firgure 6 using the
convential Jaccard distance, which is used by default in CoqPilot, we get
0.67:

Jaccard_distance(t1, t2) = 1� |{transitive, ext_sb} \ {irreflexive, ext_sb}|
|{transitive, ext_sb} [{irreflexive, ext_sb}|

= 1� 1

3
= 0.67

Jaccard ranker focuses only on statement similarity, which in this case is
relatively small, the only similar parts are highlighted with red. Jaccard
would probably not select theorem ext_sb_irr as a premise for theorem
ext_sb_trans; however, they have similar proofs and one could help the
model to generate the proof for the other. Similar parts of the proofs are
highlighted with yellow. If we measure the distance between these theorems
using the proof_similarity metric we define, we get 0.32, and our trained
model yields 0.28. When using our ranker, it is probable that one theorem
would be selected as a premise for the other.

proof_sim(t1, t2) = 0.32

embedder_pred(t1, t2) = 0.28

32

5.1 Experiment resources
As all of the computations in the case of these particular experiments

are running in the cloud of LLM providers, the experiments were conducted
on a single MacBook Pro with an M1 chip. The only computationally
expensive part of the experiments is launching multiple Coq-LSP servers at
once (CoqPilot benchmark does that to optimize the time of the experiments
and accelerate type-checking).

As we use a middleware service over LLM APIs, our financial estimations
might not be accurate. However, we roughly estimate 12 generation attempts
per theorem with seven contextual theorems at 12 cents per theorem for
Claude 3.5 and 7 cents for GPT-4o. We run an experiment for 300 theorems
and repeat it three times, resulting in 114 US Dollars.

33

6 Conclusion
We have presented BigRocq, which automates the augmentation of Rocq

projects by transforming existing proofs into proof-state trees and emitting
auxiliary lemmas for every intermediate state. Given a Rocq project, it
utilizes Coq-LSP to extract goals before and after each tactic, builds a
tree representation, and writes out new .v files containing the generated
sublemmas. All proofs are batch-validated, and detailed statistics and
interactive HTML visualizations of each proof tree are produced. We release
BigRocq as an open-source CLI so the community can expand their Rocq
corpora effortlessly.

We introduced a retrieval-augmented generation approach for Rocq,
incorporating a neural premise selector based on a self-attentive embedding
model. On a benchmark of 300 Rocq theorems evaluated with two different
proof generators, our method achieved up to a 28% relative improvement over
the Jaccard-based baseline. These findings indicate that using proof-aware
embeddings for premise ranking can substantially boost proof synthesis
performance, especially for the medium-difficulty theorems where purely
token-based similarity falls short.

We open-source all code; therefore, RocqEta ranker is available to try
from the CoqPilot plugin. Model is published at https://huggingface.co/
kdizzled/rocqstar-ranker-theorem-embeddings. To explore the project
one shall clone the mono-repo of the project from https://github.com/
JetBrains-Research/big-rocq. To run the server of the ranker one needs
to navigate to the ranker-server subdirectory and follow the guide in
the README. Last step is to apply the git patch, which is located in the
CoqPilot+RocqStar subfolder, to the CoqPilot project. This will add our
ranker to the plugin and to the benchmarking system of CoqPilot.

6.1 Future Work
We plan to extend our work in several directions. First, we will explore

the use of more advanced neural architectures for premise selection, such

34

https://huggingface.co/kdizzled/rocqstar-ranker-theorem-embeddings
https://huggingface.co/kdizzled/rocqstar-ranker-theorem-embeddings
https://github.com/JetBrains-Research/big-rocq
https://github.com/JetBrains-Research/big-rocq

as graph neural networks or transformer-based models. Second, we will
investigate the integration of our retrieval-augmented generation approach
with other proof assistants and theorem provers, such as Lean or Isabelle.
Finally, we will conduct a more extensive evaluation of our method on larger
and more diverse datasets to better understand its strengths and limitations.

35

References
[1] Emilio Jesús Gallego Arias et al. Visual Studio Code Extension and

Language Server Protocol for Coq. 2022. URL: https://github.com/
ejgallego/coq-lsp.

[2] Jesse Alama et al. “Premise Selection for Mathematics by Corpus
Analysis and Kernel Methods”. In: Journal of Automated Reasoning
52.2 (Apr. 2013), pp. 191–213. ISSN: 1573-0670. DOI: 10.1007/s10817-
013-9286-5. URL: http://dx.doi.org/10.1007/s10817-013-9286-
5.

[3] Yves Bertot and Pierre Castéran. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media, 2013. DOI: 10.1007/978-3-662-
07964-5.

[4] Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. “The tactician:
A seamless, interactive tactic learner and prover for coq”. In: Inter-
national Conference on Intelligent Computer Mathematics. Springer.
2020, pp. 271–277. DOI: https://doi.org/10.1007/978-3-030-
53518-6_17.

[5] Łukasz Czajka and Cezary Kaliszyk. “Hammer for Coq: Automation
for dependent type theory”. In: Journal of automated reasoning 61
(2018), pp. 423–453. DOI: doi:10.1007/s10817-018-9458-4.

[6] Leonardo De Moura et al. “The Lean theorem prover (system de-
scription)”. In: Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-
7, 2015, Proceedings 25. Springer. 2015, pp. 378–388. DOI: https:
//doi.org/10.1007/978-3-319-21401-6_26.

[7] Henrico Dolfing. The $440 Million Software Error at Knight Capital.
2019. URL: https://www.henricodolfing.com/2019/06/project-
failure-case-study-knight-capital.html.

[8] et al. Enrico Tassi Romain Tetley. Visual Studio Code extension for
Coq. 2022. URL: https://github.com/rocq-prover/vscoq.

36

https://github.com/ejgallego/coq-lsp
https://github.com/ejgallego/coq-lsp
https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-013-9286-5
http://dx.doi.org/10.1007/s10817-013-9286-5
http://dx.doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/https://doi.org/10.1007/978-3-030-53518-6_17
https://doi.org/doi:10.1007/s10817-018-9458-4
https://doi.org/https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/https://doi.org/10.1007/978-3-319-21401-6_26
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://www.henricodolfing.com/2019/06/project-failure-case-study-knight-capital.html
https://github.com/rocq-prover/vscoq

[9] Zhangyin Feng et al. CodeBERT: A Pre-Trained Model for Program-
ming and Natural Languages. 2020. arXiv: 2002.08155 [cs.CL].

[10] Emily First, Yuriy Brun, and Arjun Guha. “TacTok: Semantics-aware
proof synthesis”. In: Proceedings of the ACM on Programming Lan-
guages 4.OOPSLA (2020), pp. 1–31. DOI: https://doi.org/10.
1145/3428299.

[11] Andreas Florath. Enhancing Formal Theorem Proving: A Compre-
hensive Dataset for Training AI Models on Coq Code. 2024. arXiv:
2403.12627 [cs.AI]. URL: https://arxiv.org/abs/2403.12627.

[12] David Freedman, Robert Pisani, and Roger Purves. “Statistics (inter-
national student edition)”. In: Pisani, R. Purves, 4th edn. WW Norton
& Company, New York (2007).

[13] Georges Gonthier. “The four colour theorem: Engineering of a formal
proof”. In: Computer Mathematics: 8th Asian Symposium, ASCM
2007, Singapore, December 15-17, 2007. Revised and Invited Papers.
Springer. 2008, pp. 333–333. DOI: https://doi.org/10.1007/978-3-
540-87827-8_28.

[14] Ronghui Gu et al. “CertiKOS: an extensible architecture for build-
ing certified concurrent OS kernels”. In: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016,
pp. 653–669. ISBN: 9781931971331.

[15] Ivan Klimov. Mechanized verification of pretty-printing library imple-
mented in C. Bachelor’s thesis. 2023. URL: https://github.com/
klimoza/verified-kisa/tree/master/thesis.

[16] Denis Kocetkov et al. The Stack: 3 TB of permissively licensed source
code. 2022. arXiv: 2211.15533 [cs.CL]. URL: https://arxiv.org/
abs/2211.15533.

[17] Wen Kokke, Jeremy G. Siek, and Philip Wadler. “Programming lan-
guage foundations in Agda”. In: Science of Computer Programming
194 (2020), p. 102440. ISSN: 0167-6423. DOI: https://doi.org/10.
1016/j.scico.2020.102440. URL: https://www.sciencedirect.
com/science/article/pii/S0167642320300502.

37

https://arxiv.org/abs/2002.08155
https://doi.org/https://doi.org/10.1145/3428299
https://doi.org/https://doi.org/10.1145/3428299
https://arxiv.org/abs/2403.12627
https://arxiv.org/abs/2403.12627
https://doi.org/https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/https://doi.org/10.1007/978-3-540-87827-8_28
https://github.com/klimoza/verified-kisa/tree/master/thesis
https://github.com/klimoza/verified-kisa/tree/master/thesis
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://doi.org/https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/https://doi.org/10.1016/j.scico.2020.102440
https://www.sciencedirect.com/science/article/pii/S0167642320300502
https://www.sciencedirect.com/science/article/pii/S0167642320300502

[18] Andrei Kozyrev et al. “CoqPilot, a plugin for LLM-based generation
of proofs”. In: Proceedings of the 39th IEEE/ACM International Con-
ference on Automated Software Engineering. ASE ’24. Sacramento,
CA, USA: Association for Computing Machinery, 2024, pp. 2382–2385.
ISBN: 9798400712487. DOI: 10.1145/3691620.3695357. URL: https:
//doi.org/10.1145/3691620.3695357.

[19] Daniel Kühlwein et al. “Overview and Evaluation of Premise Selection
Techniques for Large Theory Mathematics”. In: June 2012, pp. 378–392.
ISBN: 978-3-642-31364-6. DOI: 10.1007/978-3-642-31365-3_30.

[20] Xavier Leroy et al. “CompCert-a formally verified optimizing compiler”.
In: ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress. 2016.

[21] Zhouhan Lin et al. “A structured self-attentive sentence embedding”.
In: arXiv preprint arXiv:1703.03130 (2017).

[22] Jessica MacNeil. Mariner 1 destroyed due to code error, July 22, 1962.
2019. URL: https://www.edn.com/mariner-1-destroyed-due-to-
code-error-july-22-1962/.

[23] Evgenii Moiseenko et al. “Relaxed Memory Concurrency Re-executed”.
In: Proc. ACM Program. Lang. 9.POPL (Jan. 2025). DOI: 10.1145/
3704908. URL: https://doi.org/10.1145/3704908.

[24] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002. DOI: https:
//doi.org/10.1007/3-540-45949-9_5.

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representa-
tion learning with contrastive predictive coding”. In: arXiv preprint
arXiv:1807.03748 (2018).

[26] Semen Panenkov. Mechanizing semantics of graph query languages in
Coq. Bachelor’s thesis. 2023. URL: https://github.com/cyphercert/
opencypher-coq/blob/master/papers/panenkov-thesis.pdf.

[27] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. “Bridging the
gap between programming languages and hardware weak memory
models”. In: Proceedings of the ACM on Programming Languages
3.POPL (2019), pp. 1–31.

38

https://doi.org/10.1145/3691620.3695357
https://doi.org/10.1145/3691620.3695357
https://doi.org/10.1145/3691620.3695357
https://doi.org/10.1007/978-3-642-31365-3_30
https://www.edn.com/mariner-1-destroyed-due-to-code-error-july-22-1962/
https://www.edn.com/mariner-1-destroyed-due-to-code-error-july-22-1962/
https://doi.org/10.1145/3704908
https://doi.org/10.1145/3704908
https://doi.org/10.1145/3704908
https://doi.org/https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/https://doi.org/10.1007/3-540-45949-9_5
https://github.com/cyphercert/opencypher-coq/blob/master/papers/panenkov-thesis.pdf
https://github.com/cyphercert/opencypher-coq/blob/master/papers/panenkov-thesis.pdf

[28] Talia Ringer et al. “QED at large: A survey of engineering of formally
verified software”. In: Foundations and Trends® in Programming
Languages 5.2-3 (2019), pp. 102–281. DOI: 10.1561/2500000045.

[29] Alex Sanchez-Stern et al. “Generating correctness proofs with neural
networks”. In: Proceedings of the 4th ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages. 2020,
pp. 1–10. DOI: https://doi.org/10.1145/3394450.3397466.

[30] Kyle Thompson et al. “Rango: Adaptive Retrieval-Augmented Proving
for Automated Software Verification”. In: arXiv preprint arXiv:2412.14063
(2024).

[31] Josef Urban et al. “MaLARea SG1- Machine Learner for Automated
Reasoning with Semantic Guidance”. In: International Joint Confer-
ence on Automated Reasoning. 2008. URL: https://api.semanticscholar.
org/CorpusID:45162613.

[32] Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. “Rethinking in-
fonce: How many negative samples do you need?” In: arXiv preprint
arXiv:2105.13003 (2021).

[33] Kaiyu Yang and Jia Deng. “Learning to prove theorems via interact-
ing with proof assistants”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 6984–6994. DOI: https://doi.org/10.
48550/arXiv.1905.09381.

[34] Kaiyu Yang et al. “Leandojo: Theorem proving with retrieval-augmented
language models”. In: Advances in Neural Information Processing Sys-
tems 36 (2023), pp. 21573–21612.

39

https://doi.org/10.1561/2500000045
https://doi.org/https://doi.org/10.1145/3394450.3397466
https://api.semanticscholar.org/CorpusID:45162613
https://api.semanticscholar.org/CorpusID:45162613
https://doi.org/https://doi.org/10.48550/arXiv.1905.09381
https://doi.org/https://doi.org/10.48550/arXiv.1905.09381

	Abstract
	Acknowledgements
	Introduction
	Objectives
	Proposed approach

	Related Work
	Rocq datasets
	Rocq's system
	Retrieval Augmented Generation
	Evaluation dataset

	BigRocq
	Implementation
	Usage

	Embeddings
	Work justification
	Modeling
	Training hyperparameters
	Training resources

	Evaluation
	Experiment resources

	Conclusion
	Future Work

	References

